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The construction of suitable algorithms for integrating hydrodynamic equations on an 
arbitrary time varying orthogonal mesh is investigated, with particular attention to the case 
where the mesh is moved with a minimum of slip. The form of mesh required to maintain a 
consistent and conservative difference is discussed, and algorithms satisfying these constraints 
are investigated. A general form in which the fluid is transported by a Lagrangian difference 
and then rezoned back on to the modified grid is studied. Particular attention is paid to the 
merits of the SHASTA-FCT algorithm for rezoning, and its use in a fully Lagrangian system 
without artificial diffusion is discussed. 

The application of computer models to study problems of the development of 
plasmas heated by strong laser pulses is now well established. One of the principal 
problems in constructing codes to model the evolution of such plasmas is the large 
range of density involved during the time history of a typical fluid particle within the 
region of interest, from solid densities of about 1O23 particles/cc down to subcritical 
values less than about 1020/cc. In order to satisfactorily map this density range, a 
nonuniform grid is necessary. Furthermore, during the early stages of irradiation, the 
plasma density structure is evolving, yet later settles into a near steady state form. 
Thus we require in the early stages an evolutionary grid, and later a stationary 
one-or more succinctly, in the early stages a Lagrangian grid and later an Eulerian 
one. 

Conventional codes for treating these problems take either an Eulerian or 
Lagrangian form. In our case it was necessary to modify the existing Eulerian code 
MAGT to incorporate a rezoning form. It was therefore clearly reasonable to follow 
the existing work of Boris and Book [ 11, Anderson [2], and Craxton and McCory 
[3] and incorporate a quasi-Lagrangian rezoning scheme within the existing Eulerian 
mesh. Since the existing code required the use of an orthogonal two-dimensional 
mesh, true Lagrangian rezoning was not possible. A quasi-Lagrangian form in which 
the net line mass distribution in each coordinate direction is kept constant was 
therefore used. In this case the rezoning is essentially one dimensional, and closely 
resembles a one-dimensional Lagrangian formulation [4]. 

It is well known that common Eulerian and Lagrangian hydro codes are 
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formulated with respect to a different spatial and temporal grid. Some attention is 
therefore given in this paper to the structures of meshes on which both consistent and 
conservative codes can be constructed. It is shown that the appropriate form of 
nonuniform mesh is that in which all the hydrodynamic variables are specified at a 
mesh point, the cell boundaries lying at the midpoints between neighbouring mesh 
points and cell. 

Two methods of quasi-Lagrangian rezoning have been suggested-velocity [ 1,2] 
and mass [3] rezoning. The former may suffer from a lack of stiffness, which allows 
mesh points to approach each other, severely restricting the time step via the 
Courant-Friedrichs-Lewy conditions. A simple remedy for this problem is given. 
Mass rezoning, whilst good in the early Lagrangian phase, proves difficult to match 
to fixed boundaries implicit in the later Eulerian phase. 

It is known that a one-dimensional Lagrangian code using a cell-centred mesh has 
severe instability problems, of both the linear and the mesh-decoupling types. Since 
the one-dimensional form of these rezoning schemes reduces to such a form, we 
present a study of the linear stability of rezoning schemes in one dimension. The 
additional stability introduced by mesh stiffening, and by the use of the SHASTA 
algorithm [5], is investigated by numerical tests. 

In this paper we analyse only the behaviour of such quasi-Lagrangian rezoning 
schemes within the limitations of an orthogonal mesh which moves parallel to the 
basic coordinate axes. In essence such rezoning is one dimensional, the extension to a 
multidimensional space being accomplished simply by a succession of one- 
dimensional movements in a fashion directly analogous to time splitting of an 
advection routine. We remark that no additional error is incurred thereby, for we are 
not attempting to model the fluid in a true Lagrangian fashion; the requirement of an 
orthogonal mesh in more than one dimension implies a slip of fluid through the mesh. 
Rather as we establish a coordinate system to suit our convenience in a quite 
arbitrary fashion, the error is incurred in interpolating the values from the old mesh 
to the new. Splitting thus corresponds to successive rezonings in which the mesh 
changes along one direction only each time. Thus we may reduce our analysis of this 
problem to a consideration of one-dimensional rezoning alone. 

THE CHARACTERISTICS OF THE MESH 

In performing fluid code calculations we solve the initial value partial differential 
equations by means of finite difference approximations to the exact equations using 
values of the variable at discrete points in space and time. These points establish a 
computational grid in both space and time. There are formally two approaches by 
which the variables may be assigned within the spatial mesh using either the 
derivative or integral form of the governing equations: 

(a) The spatial mesh is defined pointwise. Values of the variable are assigned 
to each mesh point alone. The finite-difference representation is established to be 
consistent with the governing differential equations [6]. 
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(b) The spatial mesh is defined by cells of finite volume which entirely till the 
space within the boundaries. Values of the variables are assigned to each cell in terms 
of averages over the cell volume. The finite-difference representation is established to 
satisfy integral conservation laws in terms of fluxes across the cell boundaries [7]. 

It is clear that although the interpretation placed on these descriptions is different, 
yet as the mesh is refined the differential and integral forms must become identical. 
More generally, one endeavours to ensure that the finite difference scheme is inter- 
pretable in terms of both descriptions. This is only possible for a restricted class of 
spatial mesh. 

In principle we may define two distinct classes of spatial mesh: 

(i) Define the mesh points and place the cell boundaries midway between the 
mesh points-cell centred grid. 

(ii) Define the cell boundaries and place the mesh points at the cell 
centres-mesh centred grid. 

In general, grids of type (i) are used in Eulerian codes, and those of type (ii) in 
Lagrangian. We shall show, however, that if the scheme is to be simultaneously 
consistent and conservative, a cell centred grid (i) must be used. 

On a uniform grid it is immaterial which approach is used, although the differential 
and integral approaches may lead to different forms unless care is taken. On a 
nonuniform grid this is no longer true for if the cell boundaries are midway between 
the mesh points, the cell centres do not lie at the mesh points, and vice versa. 

If the system of equations is to be both consistent and conservative, we imply that 
the value specified at the mesh point be regarded both as a point value and as an 
average over the cell volume. We consider the differencing of the simple equation 

avpt = appz (1) 

such that the quantity I v dz is conserved. Let the width of cell i be dzi, then we 
require C v,dz, to be conserved. The condition is only established if we difference 

aPIaZ+ (Pi+1 - Pi-1)/2A’i (2) 

for reasonable temporal integration forms. This representation is a consistent finite- 
difference form if the spacing between mesh points (i - 1) and (i + 1) is 242,. The 
converse is readily established. Thus we conclude that a consistent and conservative 
representation is only possible if the width Azi of cell i is half the spacing of 
neighbouring mesh points (zi+ , - zi- J, i.e., a cell centred grid. 
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CELL CENTRED GRID 

We define the mesh points zi with cell boundaries z~+~,~ such that 

‘i+ l/Z = +tzi + zit I) (3) 

by means of the cell widths 

Azj= (zj+~/*-zj-~/*}=${Zj+~-zj-~}. (4) 

In practice the mesh is defined by the quantities Azi and by the boundaries z,, and zr, 
only subject to 

5 Azi= (zf-z,,) (5) 
i=l 

when there are N mesh points, Clearly, since 

z2=2(zb+Az,)-z,, z~-~=~(z~-Az~)-z~, (6) 

a further boundary condition specifying the relationship of z, to z2 (or zN-, to z,,,) is 
required to fully define the mesh. A suitable form, which satisfies an appropriate 
consistency relation at the boundary (Appendix I), is 

z,=zb+fAz,, zz=z, -tAz,, (7) 

or 

zN=zf-fAzN, Z N-,=zN-A~N. (8) 

Only one of these boundary conditions is independent. If by symmetry we require 
both be simultaneously obeyed, 

N-l 

AZ, = 2 c (-1)’ Azi + (-l)N AZ, 
i=2 

(9) 

places an additional constraint on the values of AZ, allowed. 
This condition is always satisfied if AZ, can be expressed as the sum of two terms, 

one depending on cells (i - 1) and i alone and one on i and (i + 1) alone, i.e., 

AZ, = i(Az;- ,,z + AZ;, ,,J, 2<i<N-1, (10) 

provided AZ;,, = AZ, and Az&-~,~ = AZ,. Hence it follows by induction that 

‘i+ 1 = Zi + AZ;+ I/z (11) 
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and that Az;,,,~ is the mesh point spacing i to (i + 1). These terms are subject to the 
constraint 

N-l 

@z;,, + c AZ;, 1,2 + fz;- 1,2 = (q - q,). (12) 
i=l 

The mesh is fully specified by the (N - 1) quantities AZ;, ,,*, subject to constraint 
(12). Such a form ensures the essential ordering of the mesh, zi+, > zir if the quan- 
tities AZ;, 1,2 are positive. In contrast, the specification of a set of positive terms Azi 
does not necessarily maintain the ordering, and furthermore may lead to a tendency 
of the odd-even meshes to decouple. 

MESH CENTRED GRID 

We may approach the specification of this grid most generally by the set of mesh 
spacings 

AZ’ 1+1/z =zi+1 - zi = fCZi+3/2 - zi- I/2 1 (13) 

in a similar fashion to the preceding discussion. In this case also the cell ordering is 
maintained if the cell widths AZ/’ are defined such that 

AZ;, 1,2 = 4 (AZ,!’ + AZ;+ J (1J) 

and 

Zi+ l/2 = Zi- l/2 + AZ/* (15) 

The set AZ,!’ are subject to 

il 4’ = (zf - zd (16) 

For some purposes it is convenient to specify a mesh centred grid on a cell centred 
one. The subsidiary mesh is specified by 

zy+ 1/2 = 22, - zl’- ,,2. (17) 

The subsidiary mesh boundaries are not unique, for operation of recursion relation 
(17) yields different sets starting from either boundary, zt, or zr, unless an appropriate 
condition is obeyed. A useful sufficient condition for this is that the set of spacings 
f%+1/2 on the cell centred grid be given by 

AZ;, 1,2 = f(Az,!’ + AZ,!‘+ J (18) 
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with AZ” = AZ” = AZ’ 
ordering’prope:y that’4 

and AZ; = AZ;-, = AZ;- ,,z. Such a mesh has the useful 

Zy!f1/2 < Zi < zyJ;“/l (19) 

with respect to a second mesh zg, then 

(20) 

i.e., if the cell centres of the mesh are correctly ordered with respect to the boundaries 
of the second subsidiary mesh, then the cell boundaries will lie between the cell 
centres of the second mesh. 

REZONING 

A rezoning algorithm consists of two parts. First, some prescription must be given 
to construct the new grid from the old. Second, the variables must be transformed 
from the old grid to the new. The latter procedure essentially requires solutions of the 
fluid equations in a frame of reference (i, j, k) which is moving nonuniformly with 
respect to a fixed Cartesian system (x, y, z). In this case the ideal fluid equations take 
the conservation law form 

@/ad> + JV . (PI’) = 0, (21) 

(Wt>(puJ) + JV . (puV) + Jvp = 0, (22) 

(~/W[P(E + fu*)J] + Jv - [NE + fu’)] + JV - [pu] = 0, (23) 

where p, p, and E are the fluid density, pressure, and specific internal energy, respec- 
tively; u and V represent the fluid velocity relative to the stationary mesh (x, y, z) 
and the moving system (i, j, k); and J is the Jacobian of the transformation from 
(k .A k) to (x, Y, z) 

If the velocity of a grid point (i, j, k) relative to the fixed frame is v 

v=u-v. 

(24) 

We note that if V = 0, the equations take the usual Lagrangian form, and if v = 0, the 
Eulerian. Since J. is essentially the volume element in the moving frame, the equations 
express the normal conservation laws with a convection velocity V, apart from the 
work term in Eq. (23), which contains u. These conservation laws may be treated by 
a good conservative second-order hydro scheme, the work term being treated either 
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by a modification of the conservative form given by Boris and Book [5] or, more 
appropriately, separately in a quasi-Lagrangian fashion, Eqs. (43) and (66). 

It is clear from the above equations that rezoning is entirely equivalent to fluid 
convection and that the two should be treated simultaneously within the same routine. 
Any restrictions inherent in this procedure must be taken into account in constructing 
the new grid: for example, a fluid point (i + f) must not be moved beyond the 
neighbouring cell points zi and zi + , . 

The first part of the rezoning procedure consists of a recipe by which a suitable set 
of new mesh spacings AZ;,,,, is calculated. This set of spacings is initially deter- 
mined by the physical rezoning condition, and then modified to match the mesh 
boundaries zb and zr, and to satisfy any constraints imposed by the advection 
routine. 

The choice of the physical condition is not entirely arbitrary, for one should avoid 
any scheme which will continuously rezone and therefore lead to strong numerical 
diffusion. For example, a scheme which uses a quantity m, determined by the old cell 
size dzp to evaluate the new mesh spacing AZ,!+ ,,* through a relationship of the form 

Azl, l/2 = f{miAzP+mi+ldZP+,} (25) 

will continuously rezone. For suppose the set m remain unchanged on rezoning, and 
that a set AZ’ have been obtained by rezoning. The new set AZ are evaluated from 
(lo), and may then be used to calculate a new set AZ’ from (25). 

Azf+ 112 + hdAz:~,,2 +Az:!& + mi+l(Az:TI,z +Az:!,,,)}, 

which are not equal to the previous set. This is clearly unsatisfactory, and should be 
avoided by using values dependent only on the old set AZ” (or AZ’) to calculate the 
new AZ’ (or AZ). 

QUASI-LAGRANGIAN REZONING 

In many fluid computations where rezoning is desirable, the fluid undergoes large 
changes in density. For applications to shock waves, laser-plasma interactions, etc., a 
mesh which approximately remains fixed in the fluid is particularly convenient, i.e., is 
quasi-Lagrangian. In one dimension the extreme simplicity and versatility of the von 
Neumann-Richtmyer Lagrangian algorithm [4] will generally make such rezoning 
unnecessary. In two or more dimensions, however, the complexity and limitations of 
Lagrangian codes make rezoned Eulerian codes attractive. Furthermore, such an 
approach allows one to maintain an orthogonal coordinate system, which may be a 
considerable advantage if the code represents more than a straightforward 
hydrodynamic model. In the past such calculations have used both a mixed 
Eulerian-Lagrangian system [8], and a quasi-Lagrangian rezoned Eulerian scheme 
(31 slightly different from the one proposed here. 
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We may approach a quasi-Lagrangian formulation in two ways. We may either 
move the grid in such a way as to maintain the cell mass defined in some appropriate 
way constant [3], or ascribe a velocity to the grid approximately equal to that of the 
fluid [ 11. In the general case in which the fluid flow is multidimensional, the former 
method considers the mass between two parallel planes and the latter the mass- 
averaged velocity over the plane zi. The latter method is more general and can be 
used with an arbitrary velocity distribution; furthermore the mesh boundaries can be 
treated naturally with the scheme. Since in an extensive series of tests the method to 
be described worked well, we shall describe it first. Methods based on the cell mass 
could be made to work well only if the boundaries were unconstrained, and 
furthermore suffered from a formal lack of a primary velocity. As a result they were 
not considered entirely satisfactory and are only treated briefly. 

VELOCITY REZONING 

We may describe the motion of the grid in terms of a velocity with which the grid 
coordinate system moves relative to a stationary fixed (laboratory) system of coor- 
dinates. Thus if the coordinates of the grid centres zi in the laboratory frame are 
specified, we describe the motion in terms of the velocities ui of the grid points. For 
practical purposes, on a finite-difference temporal mesh we impose upon this rezoning 
a stiffness condition; to avoid problems with the Courant-Friedrichs-Lewy condition 
we require that the cell size dzj,,,, should not become too small during one time 
step; 

(27) 

where [ is a positive number less than 1. 
A convenient grid shift based on a given mesh velocity distribution is obtained 

from the following result: Let ui be a set of velocities obeying the 
Courant-Friedrichs-Lewy condition 

Iu,lDt~LMin(Az~~,,,,Az:~,,,), 

where L is the Courant number; then the grid shifts 

yield a new set of grid spacings which satisfy 

[l-2LMax(l,~L)/(1+2~L)]dz’,~,,,~Az~+,,,~(1+2L)Az~~,,,. 

(28) 

(29) 

(30) 
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To prove this we note that 

If C”i+ I - vi) > 0, then 

AZ;,,,, > [l - 2%L*/(l + 2xL)]dz::,,,, AZ;,,,, < (1 + 2L)dz;:,,,; (32) 

and if (vi+, - ui) < 0, then 

AZ!,,,, > [l - =/(l + 2~511 AZ::,,,, AZ;, ,,z Q AZ:: ,,z. (33) 

The case L = 4 is appropriate in the Eulerian phase. Of particular value is the case 
x= 1, which for L=f restricts the change in cell size in each rezoning to a factor of 
two, and for L = 1 to a factor of three. 

An alternative method to achieve the same end by grid shifts 

Dz, = vi Dt (34) 

with a time step constraint 

I vi+ 1 - oil Dt < (1 - C)Azl+ 1,~ (35) 

is less flexible and no less restrictive than the case L = 1. 
The motion of the mesh boundaries is easily included within this formalism by the 

addition of a uniform contraction or expansion of the mesh to match the cell boun- 
daries to the prescribed boundary motion. Thus the cell boundary velocities are 

V ,,* = tv, - fv*, ?J ,v+ l/2 = tYv - tv- 12 (36) 

which are matched to the prescribed values z+, and vr by the addition of a velocity 
component at the point i equal to 

((‘b - ul/Z)(Zf-zi) + (UF-VN+l/*)(Zi-Zb)}/(Zf-Zb). (37) 

Clearly, v,, and ur must also satisfy a constraint of form (28), namely, 

lq,lDt<LAz5,,, Jz+l Dt<LAz;-,,,. (38) 

MASS REZONING 

An alternative approach to quasi-Lagrangian rezoning has been suggested by 
McCory and Craxton [3], namely, to maintain the mass distribution in the mesh 
constant. This may be achieved by considering the mass in either the interval Azi or 
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AZ;+ 1/2. The simplest approximations for the mass in the interval zi to zi+ , lead to 
the prescriptions 

or 

Azl+,,2j~i+,,21t(pi+pi+,) (39A) 

Azf+1/2 -+ Mi+l/2[l/P, f l/Pi+ 119 (39B) 

where Mi+ ,,2 is the required mass distribution. Form (39A) is based on the density 
and weights towards high density; (39B) on the specific volume weights towards low 
density. In principle the value of p used in (39) should be taken after rezoning, 
however, [3] indicates this is unnecessary. 

The scheme of [3] is based on the subsidiary mesh centred grid discussed 
previously. Thus we set 

where 

A&+ l/2 = $(Az; + Azj; ,), (40) 

Azj’ = Mi/pi (41) 

and Mi is the required mass distribution on the subsidiary mesh. 
Since these rezoning schemes use only the mesh spacings, one fixed point is 

required to accomplish the transformation. If one end of the mesh is stationary, iden- 
tification of this point is obvious. More generally it is suggested that the centre of 
mass is appropriate. 

If the mesh is externally limited, it is necessary to introduce some slippage into the 
scheme. In the velocity approach this was achieved by means of a uniform expansion. 
In the present case it is appropriate to uniformly modify the masses Mi to 
compensate for the mass loss from the mesh so that X7= i M, is the total mass in the 
mesh. If the mass loss is subtracted from the end cells alone, bunching and loss of 
cells will occur at the boundaries. 

STABILITY CONSIDERATIONS 

If the advection algorithm used is both positivity maintaining and conservative and 
the mesh rezoning is also positivity maintaining, it follows quite generally that the 
scheme is stable. This does not, however, imply that it is well behaved, for general 
boundedness allows linear perturbations to grow until damped by nonlinear effects 
associated with positivity maintenance (for example). Thus we also demand that the 
scheme used exhibit linear stability, i.e., obey the von Neumann condition. 

Let us write the fluid finite-difference equations in the following general form, 
consisting essentially of a Lagrangian phase followed by rezoning back onto the 
mesh: 
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(zq + ’ - uJ/Dt = -(pf+ , - p,“- ,)/2Ppi” Liz;, (42) 

(g;+’ - &y)/Dt= -p;(u,“, 1 - ui”- ,)/2pY AZ;, (43) 

AZ;:;/!* = AZ;; ,,* + (I$+, - I$) Dt or 

=b{t”i/Pl) + (“i+l/Pin+*)lt (44) 

Pl+l Azl+1 =PYAzY- g(P)i+l/* + dP)i-l/*3 (45) 

p;+‘u;+’ AZ 1” =p~u’~” AZ: - g(pU)i+ l/z + g(pU)i-l/z> (46) 

py+‘(&;+’ + fu;” ‘) AZ;+’ =/I;($+’ + fzi”+“) AZ; - g[p@ + t~‘)]~+~,~ 

+ g[(& + fu2)li- 1/2 3 (47) 

where dP>i t 112 is the flux of p through the cell face i + f, and p and E are the 
pressure and specific internal energy of the gas. By u”’ we denote a velocity of 
appropriate time centring to be specified later; we note however, that if ur = zi;’ “2 = 
f(ul + zZ~’ ‘), Eqs. (42) and (43) are strongly conservative. Similarly, the fluxes g will 
be assumed to be determined by an appropriate veloity Pd. 

Let us linearise these equations about a steady system with perturbation terms, e.g., 

pj” = p + 6pn exp{ikj]. (48) 

Equations (42)-(47) reduce to the set 

gp+1 = 6~” - (i sin(k) Dt/p AZ) 6p”, (49) 

6E ‘+ ’ = BE” - (ip sin(k) Dt/p AZ) du”, (50) 

Wz) ntl = &AZ)” + i sin(k) Dt 6u or 

= - cos *(k/2) AZ 6p”/p, (51) 

and a general advection form 

a- *+ ’ + fS(Az)“’ ‘/AZ = Sfn + fi(Az)“/Az + a@ * + ,8’(6uad - &I), (52) 

where (1 + a) is the usual amplification factor of the advection routine for a uniform 
velocity and 0 is that due to a velocity perturbation. Hence 

SP nt ’ = (1 + a) 6~” + p[/?(Wd - &I) - (i sin(k) Dt &/AZ)] (53) 

for velocity rezoning or 

& ‘+ ’ = 6~” [ 1 + cos’(k/z)] + p(S(Az)“/Az) (54) 

for mass rezoning, where we have made use of the fact that since v 1~ U, a = O(6). 

6u nt ’ = (1 + a){Sun - (i sin(k) Dt/p Az) dp”}, (55) 

SE ‘+’ = (1 + a){W - (ip sin(k) Dt/p Az) 8~~). (56) 
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These equations may be simplified for the case of an ideal gas where 

E = t WY - 1 ))(P/P> 

to give 

(57) 

SP If+ ’ = (1 + a) Sp” + pp@.P - 6v) 

- (ip sin(k) Dt/dz)( 6v + (1 + a)(y - 1) au”‘}. (58) 

For most advection routines 

/J = -(ib sin(k) Dt/dz); (59) 

for single stage routines b = 1, and for flux corrected schemes b = 1 + a”, the 
amplification factor for the anti-diffusion stage. 

Let us consider the case of quasi-Lagrangian velocity rezoning, so that v = u and 
a 2 O(S). (For some FCT schemes there is a small residual diffusion which does not 
significantly modify our conclusions.) Let 

&=~&i”f +(1-~)6u”=~6u”+‘+(1-~)6u”, 

au” = lj/ du’“+ ’ +(1--)6u”=W6u”f’+(l-W)6u”, 
(60) 

and 

6U”d=6v-e(6~“+‘-6u”)=(~-8)6u”+‘+ [1-@-@J&f”. 

Hence Eq. (58) becomes 

SP * + ’ = 6p”( 1 + a) - (ip sin(k) Dt/dz) 

x (6 &lad -(b-l)&+(l+a)(y-l)&“}. (61) 

We may solve the secular equation given by (55) and (61) to obtain the stability 
conditidn. It is clear that the system is only stable if 

I(1 + a)’ + (1 + a){M+ (1 - $) + (1 + a)(r - I)(1 - w)}T*/y(* < 1, (62) 

where r= c Dt/Az. To proceed further in general requires a knowledge of a and b. 
Assuming, however, that the advection scheme is stable, ) 1 + a)* < 1, condition (62) 
becomes more restrictive as a j 0, i.e., as the flow velocity through the grid tends to 
zero. This reflects the known instability of this form near a stagnation flow [9]. In the 
limit, as a -+ 0 and 6 + 1, of quasi-Lagrangian systems, Eq. (6 1) reduces to 

SP nt ’ = 6p”( 1 + a) - (ip sin(k) Dt/Az){ (y - a) 6~“” + a (run), (63) 

where a = (y - l)(l - w) + 1 - (0 - 8) + (b - l)& which for a = 0 is only stable if 

a<0 and I- = cDt/Az < 2 dm, (64) 
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i.e., if w = $ = 1 and 9 = 0. This requires that uad, u’“, and u all be calculated at the 
end of the interval (n + 1) DC. 

The residual diffusion inherent in a two-step FCT scheme will marginally stabilise 
modes of large k, but on a reasonable sized mesh, long wave modes are still linearly 
unstable. 

We may eliminate this weak instability by using a double-step time integration [5 1, 
which also improves the accuracy. In the simplest form we calculate a value of p” ’ “* 
to use in (42) and (43) in place of p”. Thus 

,$‘+1’2 =p;/{ 1 + a(~;+, - u;-,)Dt/Az;} (65) 

and 
q+ 112 = E; _ -&I+ 112 (u;+ 1 - u;- ,)Dc/p; AZ; (66) 

gives an implicit relation for pi -” ‘I2 For ‘the ideal gas case considered earlier . 

p;+ 112 = p;/{ 1 + iy(u;+ 1 - u;- ,)Df/Az;}. (67) 

Hence 
-fl+1 

ui 
= uy - (jf,‘;” - &‘:;l’)Dt/2p; AZ; (68) 

and 

,;+’ = E; - j;+ 1’2(uiw, 1 - ui”- ,)/2p; AZ;. (69) 

In this case Eq. (55) is replaced by 

6u n+l = (1 + a)[&“{ 1 - r2/2} - (i sin(k) Df/p AZ) dp”] (70) 

which is stable if a < $7 and rs 2 when a = 0. The centre difference form, w = 4 = 4 
and 8 = 0 is stable in the quasi-Lagrangian limit. Furthermore, form (65) and (66) is 
both strongly (accurate to the round off error) conservative and positivity main- 
taining in energy provided E > p/p (valid for most materials) and 

Iui+, -q-II Dt < 242,. (71) 

If the energy conservation relation is expressed in a conservative form, the flux is the 
ZIP difference 

~{jj;++qj;+1/2 + jjy2pw]~ (72) 

A number of alternative forms of (66) may be used, of which Eq. (67) with 

yi = p&/p; (73) 

(where c: is the sound speed), is convenient when the gas is not ideal. 
To illustrate the stabilisation introduced by the modification, we show in Fig. 1 the 

response of the system of equations in a fully Lagrangian form to a sinusoidal pertur- 
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FIG. 1. Plot of the amplitude of a sinusoidal density perturbation of wavelength four times the initial 
(uniform) cell width. The initial fractional perturbation was lo-‘, and the Courant number was $. The 
amplitude is shown plotted logarithmically as a function of the number of time steps integrated by the 
fully Lagrangian centred time system of equations without FCT or grid stiffening. The unstable growth 
of the unmodified form can be seen to closely follow the linear theory (straight line). The modified 
equations, however, yield the stable soution predicted by analysis. 
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bation with and without modification. The unstable response of the unmodified set is 
clearly seen, contrasted with the good behaviour after correction. 

This system thus forms a stable fully conservative linearly stable set of Lagrangian 
equations. More accurate double step procedures involving further iterative 
calculation of pn+ “2 and zZ”+‘12 through equations of form (65) and (66) are readily 
shown to be stable if I-& 2, and progressively reduce the error in zj”+’ and [‘+I, as 
in (70). They are, of course, linearly stable. 

This analysis does not include nonlinear effects. Thus the simple form (42) and 
(43) may be expected to decouple between the meshes (si, pi, ui+ 1) for odd or even i. 
An appropriate choice of advection routine would be necessary to avoid this effect. 
Nonlinear damping in the advection routine may also play an important role 
damping out the linear instabilities discussed here. 

We consider now the case of mass rezoning. Inspection of Eqs. (44) and (45) 
shows that they are decoupled from the remainder, have eigenvalues 1 and cos2(k/2), 
and are therefore stable. This decoupling reflects the continuous rezoning effect 
described earlier, and shows that this form rezones stably in response to linear pertur- 
bations, in accord with our earlier discussion. 

Since errors in p and (dz) are independent from those in p and U, we may neglect 
these terms in Eqs. (55) and (56), the latter of which then reduces to (63), but with 

a=(Y-l)(l-W)+b[l-(#-e)]. (74) 

It is, of course, subject to the same stability conditions as discussed earlier. 
The simple form of the finite difference equations studied here in which the 

pressure work term is separated from the energy convection term is particularly 
convenient to analyse. More systematic schemes in which these terms are not 
separated, but which consider energy transport with velocity {E + p + ju’ )/ 
{E + &‘}u [5], are not as amenable to analysis. In a general way, however, we may 
note that even when Lagrangian, some energy flow through the mesh will occur 
which will lead to a damping by the advection routine, and will therefore usually 
stabilise the full set of hydrodynamic equations against the instability of Eq. (64). 

SHASTA REZONING ALGORITHMS 

The SHASTA algorithm of Boris and Book [ 1, 51 is essentially a conservative 
rezoning routine and is particularly suited to these problems. In addition, if a 
Courant-Friedrichs-Lewy time step condition is included, the algorithm is also 
positivity maintaining. More generally we may consider SHASTA (and donor cell) 
differencing as the second- (and first-) order forms of a more general set of conser- 
vative rezoning routines based on mass redistribution in which the fluid moves in a 
Lagrangian mode, and is then rezoned back into the mesh. Since these schemes are 

581/49/l-2 
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conservative, we may represent them in terms of the mass flux gi+ i,* transferred from 
cell i to cell i + 1, 

and 

Pi Azi ‘PP AzP - gi+ l/2 + &?,-I/2 (75) 

gl+ l/2 =Pi "Q i+1/2AZit1/2, if Qi+ 1/2 > 0, 

=PP+ 1 Qi+ l/2 ‘zl? 1,123 if Qi+l/2 < 0, 
(76) 

for donor cell differencing, or 

gi+1/2 = i{(i + Qi+ I/Z)' PY - (4 - Qi+ I/J* PY+ II AZ;: I/Z 

for SHASTA, where 

Q i+ l/2 = t<vi + vi+ lPt/[AZi! 112 + (Ui+ I- uiPt1 

(77) 

(78) 

and V= u - u is the flow velocity through the mesh. We note the presence of the 
additional compressive denominator to the usual donor cell form, and remark that we 
have demonstrated that its presence markedly improves the treatment of shocks with 
this term. 

The transport fluxes g are in error, mainly due to an inconsistent use of inter- 
polation formulae, but may be corrected by the addition of an antidiffusion flux 

f itl/*=V@i+l-Pi), (79) 

where q= f (A) (1 - 111) for donor cell and q= 4 for SHASTA, and i = 
t(vi + J’i+ lPf/AziO, l/2* It is the separate removal of the diffusive flux following 
transport that leads to beneficial effects of flux corrected transport, the diffusive 
transport being allowed to smooth out any spurious short wavelength ripples which 
are not recreated by the extremum limited antidiffusion phase [5 1. 

Inserting Eq. (78) in (75), it is clear that a necessary and sufficient condition that 
these routines be positivity maintaining (i.e., if pp > 0, then pi > 0) is that 

IQi+lJG4* (80) 

For a purely rezoning routine this requires that the cell boundary i + i be moved 
only within the interval of the original mesh points i and i + 1, i.e., 

We note that advection routine (75) completes the set (42)-(47) of finite difference 
fluid equations. For these flux corrected transport schemes we may derive values for 
the amplification coefficients a and /I of the form 

a = (1 + a,)(1 + aT) - 1, P= (1 + a,)&, (821 
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where aT and & are the amplification factors of the transport part: 

and 

aT = -(AI [ 1 - cos(k)] - iA sin(k), 

= -($ + A’)[ 1 - co+)] - iA sin(k), 

/IT = -i sin(k)Dt/flz; 

and for the antidiffusion stage 

a, = 2r7 [ 1 - cos(k)]. 

TIME-STEP CONSTRAINTS 

donor cell, 

SHASTA, 
(83) 

(84) 

(85) 

In the foregoing analysis we have identified a general procedure for fluid motion 
with quasi-Lagrangian rezoning which may be summarised as: 

(i) Lagrangian phase described by Eqs. (65) and (66). 
(ii) Rezoning phase with slippage given by Eq. (29). 

(iii) Advection and redistribution described by Eq. (75). 

If no slippage is allowed, the scheme is fully Lagrangian. Inherent in each of these 
steps has been a time-step restriction, namely, for step (i) 

for step (ii) 

Ci Dt < 2 Min(dz;- ,,2, AZ;+ ,,*), 

Iu i+ 1 - Ui- 11 Dt < 2 Min(dz,C l/z, dzl+ 112); 
036) 

(ViJDt,(LMin(dzj_,,,,dzl+,/,) or (Ui+I-Vi)Dt~(l--)d~l+,/,; (87) 

and for step (iii) 

I Qi+ l/z I G f* (88) 

This latter condition essentially contains two restrictions, namely, that the 
compression of the interval dzf,,,, by the flow be small, and that the slippage 
velocity Vi be sufficiently small. For the case where the rezoning velocity ui is chosen 
independently of the flow velocity, conditions (i)-(iii) reduce to 

Max{luil,Ivi(}DtgtMin{dzl-,,,,dzl+,,,}. (89) 

In the case of one-dimensional quasi-Lagrangian rezoning we may apply less resistive 
conditions since Vi 1: 0, namely, 

IUi+l -uiIDt< (1 -C)dzf+~,, (90) 
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with 0 < [ < 1. In the case of quasi-Lagrangian rezoning on a two-dimensional mesh, 
the mesh velocity zli must satisfy 

upin < vi < uy, (91) 

and the conditions 

aci Dt & 4 Min(dz{-,,,, dzf,,,,), 

1 Uil Dt < : Min(Azl- 1i2, AZ:+ liz) 

are sufficient to ensure both stability and positivity. 

(92) 

TEST CASES 

A simple yet effective test of these routines is provided by the standard shock wave 
problem. Gas under conditions matching those given by the Rankine-Hugonoit 
relations is input into the left-hand boundary of the mesh. In the specific example 
chosen we consider a Mach 4 shock wave incident on a polytropic gas of unit density 
and internal energy; the ratio of specific heats y was 5. The limiting Courant number 
Max{1 uij t ci}Dt/Azi was set by conditions behind the shock. As a test example we 
consider a mesh of 100 cells and a Courant number of OS. 

In Fig. 2 we show the runs using FCT donor-cell differencing and SHASTA on a 
constant uniform grid. The marked improvement and reduction of overshoot by the 
SHASTA routine is clear. In this regard the improved donor-cell routine of (76) 
performs markedly better than the more normal form. 

The difference between these two routines is more apparent when rezoning is 
considered. Thus in Fig. 3 we show the test case with rezoning using the linearly 
stable form with v = u”’ = uad = P’i’* It is clear that the simple SHASTA routine . 
gives an excellent representation of both the shock and the flow behind it. In contrast, 
flux corrected donor cell suffers badly from overshoot and oscillation. This behaviour 
offers an excellent example of the merits of FCT schemes. Since the programme is 
quasi-Lagrangian, the parameters Q ‘v 0; furthermore, by analogy with the von 
Neumann-Richtmyer routine, we must expect oscillation behind a shock front unless 
damping is present to prevent it. In principle, such damping is present in the lirst- 
order transport scheme, but since Q = 0 it is negligibly small for donor cell, in 
contrast to SHASTA. The overshoot is therefore strongly damped in SHASTA, but 
not in donor cell, and is not recreated on antidiffusion due to the extremum limiting 
condition. 

There is within this code strong nonlinear damping, in part associated with 
nonzero diffusion-antidiffusion terms in SHASTA, and in part with the modified grid 
velocity term. We can identify these effects by contrasting the results of the donor-cell 
form, in which the diffusion-antidiffusion is nearly zero for quasi-Lagrangian 
rezoning, with SHASTA, and with and without the mesh stiffening velocity 
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FIG. 7. The development of a centred rarefaction wave is shown calculated with SHASTA and 
centred time Lagrangian rezoning in plots (a), (b), and (c) and by a Lagrangian code in (d), as a 
function of the similarity variable: the analytic solution is shown by the line. In (a) the mesh was 
initially uniform, and in (b), (c), and (d) it was quadratic from the right-hand boundary. In (c) the right- 
hand boundary was unrestricted, but in (b) it was limited by the velocity at the boundary cell centre. 
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similarity variable with that given by analytic theory. In all these runs the mesh 
consisted of 30 cells only, and we make our comparison just before the rarefaction 
meets the mesh boundary. 

In Fig. 7a we show the calculation with an initially uniform mesh. It can be seen 
that a resonably good representation of the analytic result is obtained. The most 
serious deficiency of this calculation lies in its inability to reproduce the low density 
rarefaction tail. This was identified as due to the poor acceleration of the leading cells 
because of their large mass at the start of the expansion, and the self-steepening 

. inherent in the antidiffusion step. The difficulty is eliminated by the use of an initial 
mesh distribution appropriate to the problem, with low cell mass near the interface. 
In Fig. 7c we see the same case run with a mesh spacing increasing quadratically 
away from the interface; the representation in this case is entirely satisfactory. In the 
latter example the front mesh boundary (interface) was unconstrained; in Fig. 7b we 
restrict the front boundary velocity to that of the flow at the centre of the bounding 
cell. The net effect is to restrict the expansion in a fashion similar to, but not as 
severe as, the uniform zone case by pushing the boundary cell into higher density and 
effectively increasing its mass. 

For comparison we show in Fig. 7d the same problem treated with a standard 
Lagrangian code with quadratic zones as in Fig. 7c. It can be seen that the represen- 
tation of the tail is further improved, as the initial acceleration at the boundary is 
higher due to the smaller effective mass. This latter run was calculated with a features beyond those 

already described, we shall not discuss them further. 

DISCUSSION 

It is common practice to devise finite difference approximations to the equations of 
hydrodynamics from one of two markedly different representations of the equations. 
One approach is to obtain a representation of the governing differential equations by 
applying the condition of consistency. Alternatively, if the basic prescription is 
integral, then one requires that the equations be conservative. On a spatially uniform 
mesh it is a relatively easy matter to devise a representation which is valid for both 
approaches. On a nonuniform mesh this is only possible if a cell centred grid is used. 

The different interpretations placed on the variables in the two approaches, as 
either point variables or cell averages, lead naturally to two different ways of 
considering effects such as stability. Thus a consistent scheme based on functional 
forms would be expected to show numerical stability in terms of the response of the 
schemes to test input functions, a simple case of which is the linearised von Neumann 
stability analysis. A conservative scheme on the contrary can be analysed in terms of 
essentially bulk physical concepts such as nonnegativity and weak and strong conser- 
vation of these nonnegative quantities. Although in principle either approach to 
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stability is acceptable, in practice the two approaches are complementary in 
constructing a well-behaved code. The overall boundedness, and thus gross stability 
of the calculation, is ensured by a code which is both nonnegativity maintaining and 
strongly conservative. It is not, however, a sufficient condition for the scheme to be 
well behaved, for small perturbations, may grow without becoming unbounded, being 
limited by nonlinear effects in the code. It is these terms which are examined by the 
first approach to stability, of which the von Neumann method is a useful component. 
It is frequently stated that linear stability is a necessary condition for overall 
stability; although this is not true, it is clearly necessary for good behaviour. We have 
therefore required linear stability as well as ensuring overall boundedness for the 
schemes discussed in this paper. 

Quasi-Lagrangian rezoning moves the mesh with a local centre of mass velocity 
whilst retaining an orthogonal grid. Two methods of achieving this goal have been 
considered previously. It is here concluded that “velocity rezoning” being more 
flexible in adjusting to fixed boundaries has some advantage. A simple slippage term 
avoids reducing the cell space too severely in any time step and thereby incurring 
problems with the Courant-Friedrichs-Lewy condition. It is shown that such 
schemes are generally well behaved. 

The flux corrected transport schemes of Boris and Book are inherently rezoning in 
approach, and have therefore been adopted for this work. We have compared the 
effects of flux correction within Lagrangian fully rezoning schemes by contrasting 
results of donor cell (small flux correction) and SHASTA (large flux correction) 
schemes. The advantages of FCT are clearly revealed in this manner. Indeed, it is 
possible with SHASTA to obtain a fully conservative stable second-order one- 
dimensional Lagrangian code. At first sight one would expect that the residual 
diffusion of FCT would lead to strong contact surface smearing in such a code. The 
analysis of Appendix II, however, shows that a sharp discontinuity, for example in 
composition, remains localised at its boundary, diffusion being restricted to the two 
cells adjacent to the boundary. In contrast, however, if the change is initially 
dispersed, fourth-order diffusion will occur, an asymptotic self-similar form being 
obtained in Appendix II. The success of the SHASTA-FCT scheme is attributable in 
no small part to the behaviour of this high-order diffusion. Sharp transitions in the 
flow, such as shock waves, are localised by the action of the flux limiter; weak 
variations on the other hand are diffused out. Thus, for example, we show in Fig. 8 
the shock wave test run with rezoning SHASTA without stability modification (67). 
The results are almost identical to those of Fig. 3b, indicating the elimination of the 
weak long wavelength instability by the residual diffusion. Although this appears to 
be a general result, it is considered advisable to retain the linearly stable (and higher- 
order) form. 

A simple time-split form of differencing the hydrodynamic equations has been 
suggested here, in part for ease of analysis. Nonetheless, the scheme is well behaved 
and yields results of good accuracy in tests against known analytic solutions. For 
more complicated applications the splitting into Lagrangian and rezoning phases may 
be advantageous. The generalisation of this approach to alternative geometries is 

581/49/l-3 
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straightforward and is accomplished by the use of area weighted differences for the 
pressure gradient (or equivalently by distributed impulse) in Appendix III. The 
scheme remains nonnegative and strongly conservative in energy (momentum conser- 
vation is usually established by the symmetry relations) subject to the appropriate 
time-step constraint. This general form of advancing a fluid element and then conser- 
vatively rezoning back onto an artibrary mesh is clearly flexible for use in 
applications where the energy equation includes additional effects such as thermal 
conduction. 

Since this paper was completed, further work by Boris and co-workers [ 13, 141 has 
been brought to our attention. In these reports the use of phoenical FCT, rather than 
SHASTA is suggested to reduce phase errors in the solution. This change may be 
readily incorporated into the present work but no significant change in the results or 
conclusions is to be expected. 

APPENDIX I: CONSISTENT FINITE DIFFERENCES ON A CELL CENTRED GRID 

The following forms are readily shown to be consistent by an appropriate Taylor 
expansion: 

(Waz)i= (A+1 -L*)/2A2i~ (Al.l) 

[a(aflaz>li= [ai+*/2df;.+* -.&I + ai-l/*(h -fi-1)l/2Azi* (A1.2) 

This latter form is particularly valuable for it allows the finite difference form of the 
equality 

(A1.3) 

to be maintained. This relation forms the basis of the differencing of magnetic lieid 
terms in [ 121, which are therefore valid on a nonuniform grid, and furthermore, since 
the denominator dzi 6R, is essentially the cell volume, remain conservative. 

At a boundary we often require aflaz = 0. To second order this implies that at the 
boundary cell centre zi, 

(A1.4) 

where AZ;,, = )(z, - zs). This is consistent with the usual reflective form f,‘= f, and 
Eq. (Al.l) if AZ;,, =Azl = AZ;,,. 

APPENDIX II: CONTACT SURFACE DIFFUSION 

We consider the treatment of a contact surface discontinuity by explicit SHASTA 
with flux corrected transport under a fully Lagrangian condition with uniform flow. 
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Let us suppose that x is a coordinate system fixed in the Lagrangian frame such that 
the discontinuity is at x = 0. Let us suppose that the density discontinuity is pI 
(x < 0) and p2 (x > 0), and occurs midway between the mesh points I and I + 1. We 
now prove the useful and important result that the contact surface discontinuity 
diffuses only locally and establishes a steady state. 

Suppose the system is in the state 

PiEPlY i<I- 1, 

=PI + 4P* -P1), i = I, 

= P2 - dP* -PA i=I+ 1, 

=p27 i>I+2. 

After the initial diffusion with coefficient $ the densities are 

Pi=PlV i<I--2, 

= PI + Q4P2 -P,h i=z- 1, 

= PI + ((1 - 5a>/8)(~2 -PI>, i = I, 

= p2 - ((1 - 5a>/8)(~~ -PA i=Z+ 1, 

= P2 - Q4P2 -PA i=Z+2, 

=pz, i>Z+3. 

(A2.1) 

(A2.2) 

In general, antidiffusion is sufficiently strong that flux across the boundaries 
(I - i) and (Z + s) is extremum limited. The resultant densities are 

Pi = PI 3 iqz- 1, 

= p1 + M + 294~2 - ~1)~ i = I, 

=P~-T%~ +29a)(p,-p,), i=I+ 1, 

=P2, i>I+2. 

(A2.3) 

The density distribution thus retains its initial localised variation, but with a new 
value of a. Initially a is zero, and the sequence of values converges 0, &, a, 

2193 m,... to approach the steady value 4 as shown in Fig. 9. 
More generally, on a nonuniform mesh the equivalent form satisfying the conser- 

vation condition is 

pr = ~1 + 4p2 - plV4, pI+ 1 = p2 - 4p2 -pJ4+ l T (A2.4) 
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FIG. 9. Plot of the increase of the contact discontinuity diffusion factor a with time step. 

which after a similar calculation can be shown to reproduce itself with a new value of 
a given by 

a -+ a + &AZ 1,2W4 + ~/AZ,+ J 

-2ak’zl+,,&‘z, +Az;:,,&‘z,Az,+, +W+,,,/&+,lI~ (A2.5) 

provided 

P - (~/AZ, + WI+ &I AZ:+ 1,2 
>aMax{Az;-I,2[l/Az,- l/Az,_,],Az;+,,,[I/Az,+, - l/Az,+~ll 642.6) 

to ensure the flux across faces I - $ and I + $ is extremum limited. The steady state 
value of a for this case is 

a = fdz’ ,+ ,,A% + Az,+MAz, + AZ;, ,,z + AZ,, 2% 
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Since we are considering a purely Lagrangian system with no prescribed flow 
through the mesh, and since the mesh can be considered locally uniform over the cells 
containing the discontinuity, it is clear that the diffusion introduced by the SHASTA 
routine does not significantly disturb the discontinuity. 

In contrast to the above result is the case in which the density change occurs 
extremely slowly. Thus let 

Pi = i(P* + P2> - S(Pl -P2)fi(xiy l)T (A2.8) 

where xi is the mesh coordinate. 
After diffusion 

Pi = d(Pl + P2) - f(Pl -P2)f2(Xi7 c + Dt>* (A2.9) 

Using SHASTA on a uniform mesh, 

f2(x) = f,(x) + Qef,/~x’) Ax2 (A2.10) 

In this case flux limitation is not significant and the final density profile after antidif- 
fusion is 

where 

Pi = (PI + P2) - (PI -P2)fl(xi, t + Dt>, (A2.11) 

and thus 

f,(x, c + Dt) ‘v f2(x, t + Dt) - ~(~‘f,/~x’) Ax* (A2.12) 

afl 1 Ax4 a4fl -N---- 
at - 64 Dt ax4 ’ 

(A2.13) 

The scheme thus has a residual nonlinear diffusion described by the above result. 
This behaviour has the important consequence of stabilising the weak linear 
instability in Eqs. (41)-(47) described earlier. Figure 8 shows the shock wave 
calculation performed with the “unstable” algorithm in a fully Lagrangian system 
using SHASTA. The resulting profiles can be seen to be well behaved. 

It is perhaps of interest to explore the diffusion introduced by Eq. (A2.13). This 
equation has a family of self-similar solutions characterised by the parameter 

t,~ = (2Dt”“/Ax)(x/t”“), (A2.14) 

of which the one corresponding to an initial step discontinuity is 

f (XT 0 = 4(v), (A2.15) 

where ( is an odd function of v such that 4 -+ f 1, 4 -+ 0 as q + *co. The equation 
satisfied by 0 is then 

V49Pv4) + ?Wl&) = 03 (A2.16) 
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FIG. 10. Plots of the solutions y and Ii ydx, as functions of x, of differential equation (A4.1) 
satisfying the condition y + 0 as x -+ co. 
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or introducing the function w = dqijdq, we require the solution 

d3v/dv3 + VW = 0, (A2.17) 

where w -+ 0 as q + f co. The nature of the solutions to this equation are investigated 
in Appendix IV, where it is shown that no solution obeying these boundary 
conditions exists. In fact, the appropriate function is obtained by forming an even 
function from the solution w, which decreases for large q, namely, 

w= wlo’Io* (A2.18) 

Such a solution is discontinuous in the derivative dylldq, and therefore d2$/dq2, at 
q = 0. This surprising result reflects the retention after diffusion of the original 
discontinuity which initiated it. Plots of the functions y and # are given in Fig. 10. 

The above analysis assumed a uniform mesh; the generalisation to a nonuniform 
mesh is straightforward, but more complex. Since no new behaviour is introduced, we 
shall not pursue it further. 

It is important and significant to contrast the two results contained in this section. 
If the “discontinuity” is sharp, i.e., localised over a small group of cells, the discon- 
tinuity remains local, but is locally smoothed: its spatial progression is restricted by 
the action of the limiter. On the other hand, a nonlocal variation spread over several 
cells is progressively dispersed over the entire mesh, with the limiter playing a 
negligible role in inhibiting its diffusion. 

APPENDIX III: AREA WEIGHTED HYDRODYNAMIC DIFFERENCING 

The general approach to hydrodynamic differencing using a time split Lagrangian 
phase as in Eqs. (42)-(47) may be generalised to any orthogonal geometry. Let us 
first consider the case where the mesh lines are straight, for example, radial 
differencing in either spherical or cylindrical geometry, and let Si+ ,,2 be the area of 
the face between cells i and i + 1 and Vi the volume of cell i. Then we may replace 
Eqs. (42) and (43) by 

CT+1 
I -u; Sl+ ,,2cp;+ 1 - PI) + s;- ,,*cp; - PI- I) 

Dt =- 2p;v; 
(A3.1) 

and 
-n+ I E - El = PW+,,*W+, + zq) - sy- &4; + ui”- I)] 

Dt - 2p;vy 
(A3.2) 

In the general case it is convenient to resolve the velocity into two (or three) 
component directions to avoid centrifugal force effects. Thus if 8 is the angle between 
the mesh lines and the fundamental axis of the component u 
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(u’;” - 6)P = - IS;+ 1,2 W%+ l,2)W+1 - PY- ,I 

+ v-1,2 Sin(ei- 112)(PY - PY- l)]/2PlV~, (A3.3) 

(cl+’ 
- uYYDr = - lsY+ l/Z cos(ei+ 1/2)(P1+ 1 - PY-1) 

+ s;-l/2 cW,-,,,)(P~ - P;-l)l/&lv~ (A3.4) 

and 

(E; + ’ - .s;)/Dt = -%,,lW + Cl> siW-,,,) + ($ + CL) cos(~i-ljdll . (A3 5) 
2pyvy 

These forms are readily shown to be conservative, and may be easily modified as in 
Eqs. (67~(69) to avoid linear instability. The differences are readily shown to be 
consistent if 

ffisi+ l/2 AZ;+ I/Z + Si- 112 AZ;- I/Z }/Vi = 1 + O(Az), (A3.6) 

a result generally obeyed if Si+ l,2 and Vi take their geometrical values, for 

J 
-Li+l/Z 

vi = S(z) dz = jSi(Azj+ 1,2 + Azf-i/,) + $(dS/dz)i[AZi: 112 -Azi!,i,2] (A3.7) 
zi-1/2 

and 

f(Si+ l/2 AZft l/2 + si- I/Z Azl-l/2) 

= fSi(AZl+ 112 + Az;-,/~) + f(ds/dZ)i[AZ:: 112 -AZ:! l/2]. (A3.8) 

The error incurred by this approximation (A3.6) is no more severe than that in 
forming the difference (pi+ 1 - pi) in Eq. (42). This approach, which is based on an 
integrated representation, is a generalised form of that introduced by Gentry et al. 
[9]. It can be physically identified in terms of the total impulse communicated to the 
volume between the mesh points i and i + 1, which is then appropriately portioned to 
the cells i and i + 1 according to their approximate overlap. 

Rezoning and advection in generalised geometries may be accomplished in a 
similar way to that in a Cartesian system. Thus generalising (75), 

Pivi=PP~-gi+l/Z+ gi-l/23 (A3.9) 

where 

g i+ l/2 = tilt l/2 AZ” i+l,2l~P(t + Qi+l/2)' -PP+l(f - Qi+l/2)21, (A3. IO) 

si+ l/2 is an appropriately centred face area, and Qi+i12 is given by (78). We require 
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that the differencing be positive and uniform, i.e., that an initially constant density in 
a uniform velocity field rezone unchanged. Uniform rezoning requires that 

Vi- ~=DVi=~i+~/~D~if~/2-S;.-~/2DZi-~1/*, (A3.11) 

where Dz,, 1,2 is the shift of the face coordinates Zi+ ,,2. Thus in the common 
geometries 

s;+1,2 = 13 planar, 

= ?iCsP+ 112 + si+ l/A cylindrical, (A3.12) 

= 3(SP+ I,2 + d{Sl)+1/2Si+I/2~ + si+l{*)9 spherical 

clearly satisfy (A3.1 l), and reduces to (75) in the planar case. 
The positivity constraint may be satisfied by a time-step limit of form (80): 

I Qi+ 112 I < a, where 

and 

Si+ l/2 < Min(Sy, Sp, ,)/(a + f)’ 

Si = Vi/Azi. 

In a cylindrical system 

si = fCsi- L/2 + si+ l/Z) 

and condition (A3.13) is satisfied if a = $(fi - 1) and 

(A3.13) 

(A3.14) 

(A3.15) 

si+ I/* = sP+ I/* + Min[Q(si+ 112 - sU+ l/Z), sP-l/21* (A3.16) 

This latter condition is unnecessarily restrictive at the axis (i = 1) when S,,, = 0, and 
may be replaced by 

%,, = si,, + Min[f(S,,, - %>v (Az’,;,/Az;~,) %,,I. (A3.17) 

Similar constraints may be evaluated for other systems. 

APPENDIX IV: THE SOLUTIONS OF A GIVEN DIFFERENTIAL EQUATION 

We wish to investigate the behaviour of the equation 

y+xy=o. (A4.1) 

The series solution 

y = C a,x” (A4.2) 
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is easily obtained by Frobenius’ method. The coefficients a, satisfy the recurrence 
relation 

a n+4 = -a& + 4)(n + 2)(n + 1). (A4.3) 

Since a3 = 0, it is clear that three independent series based on a,, a,, and a2 exist. 
The transformation 

q = jx4/3 (A4.4) 

yields the equation 

jY+~a-‘Jj-+-‘Jj+ y=(), (A4.5) 

from which the asymptotic series decreasing to zero for large x 

y = C b,q-‘n+1’4) exp(-q) 
n 

(A4.6) 

is obtained through the recurrence relation 

3nb, + (3n2 -n + &) b,-, + (n - :)(n2 - (&I + 4) b,-, = 0 (A4.7) 

containing one independent constant b,. 
To investigate the solutions obtained, we derive the general integral form by 

Laplace’s transformation 

y = ! exp[ft4 + xt] dt, (A4.8) 

where the integral is performed over an appropriate contour in the complex plane. 
Since the contour must start and terminate at points where the integrand is zero, the 
contour must have its end points within segments of the t plane where Re(t4) < 0, as 
in Fig. 11. There are four such segments. Since a nonzero integral results only for 
paths between segments, three independent solutions are obtained by contours 
between independent segments. The only solutions for which y + 0 at x + +co must 
be those where Re(t) < 0, i.e., those shown in Fig. 11. It is clear that both other 
solutions --f fco as x + +co. Furthermore since Re(t) # 0 on this contour, the 
solution cannot be even (or odd) and therefore itself tends to infinity for large 
negative x. Thus we conclude that there exists no solution to (A4.1) obeying the 
boundary condition y + 0 as x + f co. 

Integrating (A4.8) along contour (a) in Fig. 11, we obtain after elimination of a 
numerical constant 

y= O” I exp[--s4 - sx] sin[rr/4 - sx] ds, 
0 
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FIG. 11. Diagram of the complex plane f, indicating the hatched sectors within which imegral paths 
of Eq. (A4.8) must approach infinity. The paths of (a) solution (A4.9) and (b) asymptotic forms (A4.10) 
are shown. 

for which 

a, = a @r(a), a, = -; fir($>, a* = a fir(:) (A4.10) 

yields the desired solution. The corresponding asymptotic form is obtained by 
integrating (A4.8) along path (b) in Fig. 11 through the saddle point t = -xli3; 

and hence 

y--f &i/F)x-1’3 exp[-q] (A4.11) 

b, = f?/?i?f. (A4.12) 

ACKNOWLEDGMENTS 

I would like to thank A. J. Bennett for many helpful discussions on rezoning. Valuable comments and 
stimulation from Dr. R. J. Evans are gratefully acknowledged. This work has been supported by a grant 
from the SERC Rutherford Laboratory. 



QUASI-LAGRANGIAN REZONING OF FLUID CODES 43 

REFERENCES 

1. J. P. BORIS AND D. L. BOOK, in “Methods in Computational Physics” (B. Alder, Ed.), Vol. 16, 
p. 85, Academic Press, New York, 1976. 

2. D. V. ANDERSON, J. Comput. Phys. 17 (1975), 246. 
3. R. S. CRAXTON AND R. L. MCCORY, J. Comput. Phys. 33 (1979), 432. 
4. J. VON NEUMANN AND R. D. RICHTMYER, J. Appl. Phys. 21 (1950), 232. 
5. J. P. BORIS AND D. L. BOOK, J. Comput. Phys. 11 (1973), 38. 
6. R. D. RICHTMYER AND K. W. MORTON, “Difference Methods for Initial Value Problems,” 

Interscience, New York, 1967. 
7. P. D. LAX AND B. WENDROFF, Comm. Pure Appl. Math. 13 (1960), 217. 
8. R. M. FRANK AND R. B. LAZARUS, in “Methods in Computational Physics,” Vol. 3, p. 47, Academic 

Press, New York, 1963. 
9. R. A. GENTRY, R. E. MARTIN, AND B. J. DALY, J. Comput. Phys. I (1967), 87. 

10. Y. B. ZEL’DOVICH AND Y. P. RAIZER, “Physics of Shock Waves and High Temperature 
Phenomena,” Academic Press, New York, 1966. 

11. D. G. COLOMBANT AND J. H. GARDNER, J. Comput. Phys. 22 (1976), 389. 
12. G. J. PERT, J. Comput. Phys. 43 (1981), 111. 
13. J. P. Borus, NRL Report 3237, 1976. 
14. E. S. ORAN AND J. P. BORIS, NRL Report 4371, 1980. 


